
1.4. Computing interest rate for different 
period lengths  

 
1.4.1. Relationship between the period length and 

interest rate 
  

The problem 12 at the end of the previous section was 
supposed to be a simple, one section bridge, to this section. Here, 
we elaborate on the subject of relationships between the interest 
rate and the period length. In order to do that, we will rewrite 
(1.3) as follows. 
 

TRBTE )1()( +×=       (1.10) 
 
where parameter T, unlike the integer value of n in (1.3), is a 
real number. 
 

This notation reflects the fact that the period length can be 
any real number, and the ending value is a continuous function 
of the period length. The consequences of this substitution are 
not as trivial as it seems at first. It ties together the interest rate 
and units of measure for the period. The unit of measure for the 
period with length T is a period of time with one unit length, to 
which we apply the interest rate. If R is the annual interest rate, 
then T has to be measured in years. Otherwise, the result will be 
invalid. If some lender applies weekly interest rate of , and 
lends $100,000, then the ending value to be repaid in a week is 

. However, if an analyst 
mistakenly measures the period in days, then the calculation 
produces . This is, obviously, an 
invalid result. In fact, it might be a disastrous one. So, we should 
always remember about this relationship: the interest rate is 
always associated with the period length.  
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The lending period has to be measured in units of time 
the interest rate is applied to. 

 
If this is a weekly interest rate, and the lending period is three 
weeks, then we should substitute T = 3 into equation (1.10). If 
this is a monthly interest rate, and the month has 30 days, then 
for the same three weeks period we should substitute 

7.030/)73( =×=T . If the month has 28 days, then 
75.028/)73( =×=T .  

 
  

1.4.2. Computing interest rate for shorter or longer 
periods. Nominal and effective interest rates 

 
 The next question is, how to compute an interest rate for 
some period, provided we know the interest rate for a period 
with different length. If the annual interest rate is 120 %, would 
it be valid to assume that the interest rate for a quarter is 
(120)/4=30%? What kind of method should we use? This is the 
area where we have to take a look at the application context.  

Do we want to use the obtained interest rate in a 
compounding scenario and, henceforth, to make use of formula 
(1.3)? Or, are we going to ignore compounding, and consequently 
use the non-compounding context and hence formula (1.9)? This 
is not a hypothetical but, indeed, a practical situation. A 
financial analyst has to make this choice every day (unless 
software does this for him). Presently, these issues are allegedly 
resolved by introduction of certain somewhat artificial 
constructs. In particular, two important and often used notions 
such as the nominal interest rate and effective interest rate are 
such constructs. In the example above, the nominal annual 
interest rate is 120 %. Then, the monthly interest rate will be 
calculated as 120/12(months) = 10%. (If thus obtained monthly 
interest rate should be called a nominal interest rate, or 
somehow else, depends on the following usage, but presently this 
question is ignored, in order not to add more ambiguity.) 



Anyway, such a monthly interest rate produces the effective 
annual interest rate as follows: , which is very 
different from the original 120 %. This happens because of the 
compounding that is assumed in this case implicitly.  

%8.213)1.01( 12 =+

Without compounding, the nominal interest rate becomes 
effective interest rate, which is also equal to 120 %, when we 
apply similarly the back and forth transformations 
( , %1012/120 = %1201210 =× ).  
 

The approach introducing the notions of the nominal and 
effective interest rates looks complicated and non-intuitive. 
However, the proposed explicit introduction of the notion of 
compounding context helps to clarify the issue, although only to 
some extent, and the user still has to exercise caution and 
common sense not be dismayed with the results. According to 
this approach, in addition to non-intuitive terms we have to add 
more definitions and certain conditional phrases. Then, the 
computed value for the effective annual interest rate supposed to 
become more legitimate. Namely, we have to say exactly this: 
“Nominal annual interest rate at 120 % compounded monthly”. 
This phrase still might be a little cryptic, but at least 
compounding is mentioned this time. This is why financial 
analysts have to choose the words carefully when explaining 
what kind of interest rate is discussed with the client. However, 
the problem is that the general public lacks this refined 
knowledge, while these people always present on the other side 
of lending equation. 

We agree that this issue of computing interest rate has been 
overcomplicated without good reasons, which is much explained 
by historical developments. In fact, there is only one interest 
rate that can be simply and unambiguously converted to an 
interest rate for a longer or shorter period. We just have to 
specify the compounding or non-compounding context. 
Overwhelming majority of practical applications, such as 
mortgages and annuities, assume a compounding context. 



However, the traditions, conventions and some mentality inertia 
are things that always should be counted. 

Although there are no mathematical or sound business 
reasons to introduce the nominal and effective interest rates, as 
well as a conditional wording for their manipulation, we should 
understand that this is the conventional notation apparatus 
adapted in this industry and, a least for now, we have to comply 
with its pitfalls. The problem with these notions is that majority 
of users do not understand, or quickly forget, these intricacies 
and simply begin to divide the annual interest by the number of 
months, if they compute a monthly interest rate from the annual 
interest rate. When they need semiannual interest rate and they 
know the monthly interest rate, they multiply the monthly 
interest rate by six. No reservations, no conditional words, no 
mentioning of effective or nominal interest rates. This is how the 
everyday practice corrected these artificial constructs.  
 

1.4.3. Mathematical foundations of interest rate 
calculations 

 
Let us to consider an example. Suppose we want to do 

quarterly compounding using correct conventional notions of 
nominal and effective interest rates. What do we have to do if we 
know the annual effective interest rate? We should not divide it 
by four, should we? Should we find a power of  of this 
number? Apparently yes, but we are not sure if the lender would 
agree with this interpretation given the following consequences.  

4/1

The annual nominal interest rate is 120 %, as before. The 
first approach is to use compounding and find a quarterly 
interest rate as . With the 
second approach, when we apply the notions of nominal and 
effective interest rates, we have to calculate the ending value for 
a quarter using the original 120%, and applying a simple 
dividing rule, which produces the interest rate of 30 % for the 
quarter, effectively creating a non-compounding application 

%79.212179.01)2.11( 4/1 =≈−+



context. However, in today’s practice, this context is usually not 
mentioned.  

Let us compare the results. The beginning value is $100. In 
the first case, 79.121$)2179.01(100$1 =+×=E . The second 
approach produces 130$)3.01(100$1 =+×=E . If we do 
calculation for a one year period, then we have 

, and 
 respectively. The results are 

substantially different. We have no doubt with regard to the first 
compounding approach, because we did calculations from scratch 
according to derived formulas. So, the problem is with the second 
method.  

220$)2179.01(100$ 4
1 ≈+×=E

61.285$)3.01(100$ 4
1 ≈+×=E

Mathematical consideration of this phenomenon is as 
follows. If the second method is true, then the following equality 
to be held. 
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The following transformations can be done. We raise both sides 
of equation (1.11) to power T. Both sides are positive. So, this 
operation is an equivalent mathematical transformation. We 
obtain: 
 

T
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The right side of (1.12) is a binomial sequence. We can rewrite it 
as follows (Salas, 2007). 
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Formula (1.13) shows that the left and right sides of equation 
are not equal. If T is an integer, then the sequence on the right 



side has a finite number of terms, all of them are positive. If T is 
not an integer, the number of terms is infinite. So, our 
assumption is invalid, and, consequently, the method itself is 
invalid. Nonetheless, this method has a wide acceptance in the 
industry, and it is used in numerous compounding calculations, 
while it works only for non-compounding scenarios based on 
formula (1.9) and its variations. So, the conventional approach 
used in the financial industry is an approximation, although 
overwhelmingly the users do not aware about this specific of the 
standard approach. 

Unfortunately, the idea mixing different contexts in the 
form of effective and nominal interest rates, and adding 
conditional phrases to resolve this inherent conflict between 
different contexts is not exactly efficient. In fact, it is misleading, 
but this is how the things were arranged. Human mind requires 
more consistency to avoid conflicts. Maybe at some point people 
will stop using the nominal interest rate, and begin to use the 
interest rate as a single notion. If this is the case, then in 
addition the application context should be defined, which is 
presently the compounding context almost without exceptions. If 
this approach is accepted, then recalculation of interest rate to 
shorter or longer periods becomes simple, straightforward, and 
unambiguous procedure. However, until that time we should 
understand and use the current industry methods. 

Be aware that in the literature, the interest rate is 
overwhelmingly used without distinguishing across the 
boundaries of compounding and non-compounding contexts, as if 
this is a single territory. This is how people responded to 
overcomplicated constructs representing the notion of interest 
rate.  
 
1.4.4. Computing interest rates. Numerical examples  
 

Below, we provide a numerical example for a smaller value 
of interest rate, in order to see, how critical is the mixture of 



different contexts in this case. Let us assume %5=r . Then, the 
compounding approach delivers the result 
 
    227.101)05.01(100$ 4/1 =+×=E
 
The second, proportional or non-compounding approach produces  
 

25.101)0125.01(100$ =+×=E  
  
The difference is 1.3 cents, which doesn’t look as a big variation. 
The problem is that this is a systematic error. If we use invalid 
interest rate to calculate the ending value for four periods in the 
compounding scenario, then we will get the difference of 9.5 
cents on a sum of $100. Eight periods produce 20 cents. In 
practice, the number of periods can be tens and hundreds, which 
is a common situation with mortgages, and transaction values 
much bigger than our $100. So, this can be noticeable amount 
when it is accumulated across multiple periods and/or across 
multiple financial instruments. The error grows rapidly with  
the increase of interest rate, far quicker than linear 
dependencies. This fact is illustrated by Table 1.3 and Fig. 1.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1.3. Differences in interests produced by two methods for the 
same principal.  
 
Interest 
Rate, % 

Interest, $ 
difference for 
one period per 
$100, between 
the compounding 
and nominal 
interest rate 
methods 

Difference, % 
accrued for 
the total 
period, 
composed of 
four periods  

Difference, % 
accrued for 
eight smaller 
periods  

5 0.023 0.095 0.2 
50 1.83 10.18 31.6 
80 4.18 27.36 106.0 
120 8.21 65.61 331,7 
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Fig. 1.2. Difference between the interests computed by two methods. 
 



In the first column of the Table 1.3, the first method assumes a 
compounding context, while the second method uses an effective 
interest rate and a nominal interest rate for computing interest 
rate for smaller periods. 
 So, analysts have to exercise consistent approach when 
manipulating interest rates. This consistency presumes to 
remain within the boundaries of compounding or non-
compounding contexts, and not to cross the border line between 
them. Otherwise, the results will be invalid. 
 

1.4.5. Problems and Exercises: 
 
1. The interest rate is applied to a period of 200 days. What 
value of T in formula (1.10) has to be used if we calculate the 
ending value for the following periods: 120 days; 2.24 days; 2 
weeks; half a year (the year has 366 days); 72 hours; 3 days and 
3 hours; two months (March and April). 
 
2. An annual nominal interest rate is 24 %. What is the effective 
annual interest rate compounded monthly and semimonthly? 
(Hint: consider the use of formula 1.10.) 
 
3. A nominal interest rate for decade is 0.012. What would be the 
effective annual interest rate compounded monthly? (Although 
the decade long period is unusual, the periods can have any 
length. One year period is a matter of convenience, but not a 
mathematical or business restriction.) 
 
4. An effective annual interest rate is 0.1268. What is the annual 
nominal interest rate? 
 
5. What interest is more beneficial to quote for the lender, 
nominal or effective? Assume that the number is the same.  
 



6. Is the result from the problem 5 always held true? If this is 
not true, explain why. (Hint: recall the discussion about the 
properties of compounding.) 
 
7. The borrower is quoted an annual nominal interest rate at 0.6. 
He wants to borrow $100,000 for a period one year. Using this 
loan, he will earn $175,000. Is it a good deal for him if the 
interest is computed using the effective interest rate 
compounded monthly? 
 
8. The borrower is quoted an annual interest rate at 9 % for a 
two years loan. The interest and principal to be paid all at once 
at the end of the second year. The borrower did not ask any 
questions and signed the loan agreement. What could be the 
final amount to be paid? Provide two possible scenarios 
assuming that the lender is also aware about the existence of 
nominal and effective interest rates. 
 
9. Some credit cards have the terms such as “24 % interest rate 
compounded weekly”. Let us assume that somebody bought a car 
at $30,000. He pays interest once a year. How much interest he 
will pay for ten years? 
 
10. The borrowed amount was $2000. The interest paid after one 
year was $300. What was the annual nominal interest rate if the 
interest was calculated based on annual effective interest rate 
compounded monthly? 
 
11. An annual nominal interest rate is 0.07. What is the interest 
to be paid in three years and a half on the principal amount 
$2,300,000. 
 
12. The interest and principal paid after 4.5 years is $1200. The 
principal was $9000. What was the annual nominal interest 
rate? 
 



1.5. Continuous compounding.  
 
 The previous section hopefully convinced us that we 
should know the context of the problem, which is whether 
compounding or non-compounding. There is a possibility to 
merge them together, but this has to be done cautiously and 
rightly, and we will present such a case later. An attempt to mix 
these concepts through the nominal and effective interest rates 
has inconsistencies. However, it is still in use and the reader 
should understand its specific. In this section, we will enhance 
the understanding of compounding context thoroughly studying 
its properties.  
 Previously, we considered discrete periods only. However, 
compounding is a very beneficial option for the lender allowing 
to receive higher interest while quoting the same interest rate 
for a period. From the lender perspective, it makes sense to have 
as many periods as possible, ideally infinitely small and 
countless. Mathematics provides appropriate quantitative 
instruments.  
 
 


	1.4. Computing interest rate for different period lengths 
	1.4.1. Relationship between the period length and interest rate
	1.4.2. Computing interest rate for shorter or longer periods. Nominal and effective interest rates
	1.4.3. Mathematical foundations of interest rate calculations
	1.4.4. Computing interest rates. Numerical examples 
	1.4.5. Problems and Exercises:

	1.5. Continuous compounding. 

